Semi-supervised learning of hierarchical representations of molecules using neural message passing
نویسندگان
چکیده
With the rapid increase of compound databases available in medicinal and material science, there is a growing need for learning representations of molecules in a semi-supervised manner. In this paper, we propose an unsupervised hierarchical feature extraction algorithm for molecules (or more generally, graph-structured objects with fixed number of types of nodes and edges), which is applicable to both unsupervised and semi-supervised tasks. Our method extends recently proposed Paragraph Vector algorithm[13] and incorporates neural message passing [7] to obtain hierarchical representations of subgraphs. We applied our method to an unsupervised task and demonstrated that it outperforms existing proposed methods in several benchmark datasets. We also experimentally showed that semi-supervised tasks enhanced predictive performance compared with supervised ones with labeled molecules only.
منابع مشابه
Incremental Learning by Message Passing in Hierarchical Temporal Memory
Hierarchical temporal memory (HTM) is a biologically inspired framework that can be used to learn invariant representations of patterns in a wide range of applications. Classical HTM learning is mainly unsupervised, and once training is completed, the network structure is frozen, thus making further training (i.e., incremental learning) quite critical. In this letter, we develop a novel techniq...
متن کاملFew-Shot Learning with Graph Neural Networks
We propose to study the problem of few-shot learning with the prism of inference on a partially observed graphical model, constructed from a collection of input images whose label can be either observed or not. By assimilating generic message-passing inference algorithms with their neural-network counterparts, we define a graph neural network architecture that generalizes several of the recentl...
متن کاملIclr 2018 F Ew - S Hot L Earning with G Raph N Eural N Et - Works
We propose to study the problem of few-shot learning with the prism of inference on a partially observed graphical model, constructed from a collection of input images whose label can be either observed or not. By assimilating generic message-passing inference algorithms with their neural-network counterparts, we define a graph neural network architecture that generalizes several of the recentl...
متن کاملSemi-Supervised Learning Based Prediction of Musculoskeletal Disorder Risk
This study explores a semi-supervised classification approach using random forest as a base classifier to classify the low-back disorders (LBDs) risk associated with the industrial jobs. Semi-supervised classification approach uses unlabeled data together with the small number of labelled data to create a better classifier. The results obtained by the proposed approach are compared with those o...
متن کاملNeural Message Passing for Quantum Chemistry
Supervised learning on molecules has incredible potential to be useful in chemistry, drug discovery, and materials science. Luckily, several promising and closely related neural network models invariant to molecular symmetries have already been described in the literature. These models learn a message passing algorithm and aggregation procedure to compute a function of their entire input graph....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1711.10168 شماره
صفحات -
تاریخ انتشار 2017